Physics: implement basic gravitational attraction

This commit is contained in:
0xdeadbeer 2023-10-21 13:08:30 +02:00
parent ac479c7a69
commit 957c4b6f68
3 changed files with 176 additions and 46 deletions

View File

@ -1,16 +1,21 @@
#version 330 core
in vec4 frag_pos;
in vec4 frag_normal;
in vec3 object_color;
out vec4 output;
void main() {
vec4 ambient = vec4(0.0, 0.2, 0.46, 1.0);
vec4 norm = normalize(frag_normal);
// vec4 ambient = vec4(0.0, 0.2, 0.46, 1.0);
vec4 light_color = vec4(0.7, 0.7, 0.7, 1.0);
vec4 color = vec4(object_color.xyz, 1.0f);
vec4 light_location = vec4(0.0, 5.0, 0.0, 0.0);
vec4 light_color = vec4(0.1, 0.1, 0.2, 1.0);
vec4 light_distance = frag_pos - light_location;
float inverted_dot = -dot(frag_normal.xyz, light_distance.xyz);
vec4 light_location = vec4(5.0, 5.0, -10.0, 0.0);
vec4 light_direction = normalize(light_location - frag_pos);
float diff = max(dot(norm.xyz, light_direction.xyz), 0.0);
output = ambient * light_color * inverted_dot;
vec4 diffuse = diff * light_color;
output = color + diffuse;
}

View File

@ -6,12 +6,15 @@ uniform mat4 view;
uniform mat4 projection;
uniform mat4 translation;
uniform mat4 rotation;
uniform vec3 color;
out vec4 frag_pos;
out vec4 frag_normal;
out vec3 object_color;
void main() {
gl_Position = projection * view * translation * rotation * vec4(pos.xyz, 1.0);
gl_Position = projection * view * translation * vec4(pos.xyz, 1.0);
frag_pos = gl_Position;
frag_normal = translation * vec4(normal.xyz, 1.0);
object_color = color;
}

200
main.c
View File

@ -1,3 +1,4 @@
#include <time.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
@ -8,10 +9,13 @@
#include <assimp/scene.h>
#include <assimp/postprocess.h>
unsigned int vao;
unsigned int vbo;
unsigned int ebo;
unsigned int nbo;
float frand48(void) {
return (float) rand() / (float) (RAND_MAX + 1.0);
}
float fov = 45.0f; // default fov
float fov_change = 1.0f;
unsigned int shader_program;
unsigned int vertex_shader;
unsigned int fragment_shader;
@ -20,27 +24,13 @@ unsigned int fragment_shader;
const char *vertex_shader_location = "assets/shaders/shader.vert";
const char *fragment_shader_location = "assets/shaders/shader.frag";
// GPU data
float *vertices = NULL;
unsigned int *indices = NULL;
float *normals = NULL;
long vertices_num = 0;
long indices_num = 0;
long normals_num = 0;
// Camera / LookAt
vec3 camera_position;
vec3 world_origin;
vec3 up;
vec3 right;
vec3 forward;
// structs
struct object {
mat4 rotation_matrix;
mat4 translation_matrix;
vec3 translation_force;
vec3 rotation_force;
vec4 translation_force;
vec4 rotation_force;
vec4 position;
vec4 rotation;
vec3 color;
float mass;
void *next;
@ -210,6 +200,47 @@ int load_shaders() {
return 0;
}
void calculate_gravity(struct object *src, struct object *target, vec3 force) {
vec4 tmp;
glm_vec4_sub(target->position, src->position, tmp);
vec3 distance;
glm_vec3(tmp, distance);
float h1 = sqrt((distance[0] * distance[0]) + (distance[1] * distance[1]));
float h2 = sqrt((h1 * h1) + (distance[2] * distance[2]));
float g = 6.67f * 1e-11f;
float top = g * src->mass * target->mass;
vec3 top_vec = {top, top, top};
float mass_area = target->mass;
for (int i = 0; i < 3; i++) {
distance[i] = (distance[i] * distance[i] * distance[i]);
/*if (distance[i] > -0.1 && distance[i] < 0) {
distance[i] = -0.1f;
}
if (distance[i] < 0.1 && distance[i] > 0) {
distance[i] = 0.1f;
}*/
}
for (int i = 0; i < 3; i++) {
if (distance[i] == 0) {
force[i] = 0.0f;
continue;
}
//force[i] = mass_area * (top_vec[i] / (distance[i] + (1 / (target->mass / mass_area))));
force[i] = (top_vec[i] / (h2 / (target->position[i] - src->position[i])));
//force[i] = (top_vec[i] / distance[i]);
}
}
void display() {
mat4 view;
mat4 projection;
@ -220,6 +251,7 @@ void display() {
GLint rotation_uniform;
GLint view_uniform;
GLint projection_uniform;
GLint color_uniform;
glClearColor(0.13f, 0.13f, 0.13f, 0.0f);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
@ -230,7 +262,7 @@ void display() {
glm_translate(view, view_translate);
glm_mat4_identity(projection);
glm_perspective(glm_rad(45.0f), (float) viewport[2]/(float) viewport[3], 0.01f, 100.0f, projection);
glm_perspective(glm_rad(fov), (float) viewport[2]/(float) viewport[3], 0.01f, 10000.0f, projection);
view_uniform = glGetUniformLocation(shader_program, "view");
projection_uniform = glGetUniformLocation(shader_program, "projection");
@ -241,9 +273,38 @@ void display() {
glUniformMatrix4fv(projection_uniform, 1, GL_FALSE, (float *) projection);
for (struct object *obj = objects; obj != NULL; obj = obj->next) {
glm_translate(obj->translation_matrix, obj->translation_force);
glUniformMatrix4fv(translation_uniform, 1, GL_FALSE, (float *) obj->translation_matrix);
glUniformMatrix4fv(rotation_uniform, 1, GL_FALSE, (float *) obj->rotation_matrix);
mat4 translation_matrix;
glm_mat4_identity(translation_matrix);
// calculate gravity
for (struct object *target = objects; target != NULL; target = target->next) {
if (target == obj) {
continue;
}
vec3 force;
glm_vec3_zero(force);
calculate_gravity(obj, target, force);
//glm_vec4_add(obj->position, *force, obj->position);
vec4 force_new;
for (int i = 0; i < 3; i++) {
force_new[i] = force[i];
}
force_new[3] = 0.0f;
float n = obj->mass;
vec4 scaler = {n,n,n,1.0f};
glm_vec4_div(force_new, scaler, force_new);
glm_vec4_add(force_new, obj->translation_force, obj->translation_force);
//glm_vec4_add(force_new, obj->position, obj->position);
}
glm_vec4_add(obj->position, obj->translation_force, obj->position);
glm_translate(translation_matrix, obj->position);
glUniformMatrix4fv(translation_uniform, 1, GL_FALSE, (float *) translation_matrix);
glUniform3fv(color_uniform, 1, (float *) obj->color);
glBindVertexArray(obj->vao);
glDrawElements(GL_TRIANGLES, obj->indices_num, GL_UNSIGNED_INT, (void *) 0);
@ -275,6 +336,19 @@ void keyboard(unsigned char key, int x, int y) {
}
}
void mouse(int button, int state, int x, int y) {
switch (button) {
case 3:
fov -= fov_change;
break;
case 4:
fov += fov_change;
break;
default:
break;
}
}
void setup() {
for (struct object *obj = objects; obj != NULL; obj = obj->next) {
glGenVertexArrays(1, &obj->vao);
@ -307,6 +381,7 @@ void setup() {
glEnable(GL_DEPTH_TEST);
}
struct object *create_object(float mass, const char *model) {
struct object *new_object = (struct object *) malloc(sizeof(struct object));
@ -315,8 +390,10 @@ struct object *create_object(float mass, const char *model) {
}
new_object->mass = mass;
glm_mat4_identity(new_object->translation_matrix);
glm_mat4_identity(new_object->rotation_matrix);
glm_vec4_one(new_object->position);
glm_vec4_one(new_object->rotation);
glm_vec4_zero(new_object->translation_force);
glm_vec4_zero(new_object->rotation_force);
new_object->vertices_num = 0;
new_object->indices_num = 0;
new_object->normals_num = 0;
@ -324,6 +401,13 @@ struct object *create_object(float mass, const char *model) {
new_object->indices = NULL;
new_object->normals = NULL;
new_object->next = NULL;
glm_vec3_one(new_object->color);
// choose random color
for (int i = 0; i < 3; i++) {
new_object->color[i] = frand48();
fprintf(stdout, "New color part set: %f\n", new_object->color[i]);
}
if (load_model_to_object(model, new_object) == -1) {
return NULL;
@ -345,6 +429,8 @@ struct object *create_object(float mass, const char *model) {
}
int main(int argc, char **argv) {
srandom(time(NULL));
glutInit(&argc, argv);
glutInitDisplayMode(GLUT_RGB | GLUT_DOUBLE);
glutCreateWindow("Simple Space Time Simulator");
@ -357,6 +443,7 @@ int main(int argc, char **argv) {
fprintf(stdout, "Status: using with GLEW %s\n", glewGetString(GLEW_VERSION));
glutKeyboardFunc(&keyboard);
glutMouseFunc(&mouse);
glutDisplayFunc(&display);
if (load_shaders() != 0) {
@ -365,20 +452,55 @@ int main(int argc, char **argv) {
}
// objects
struct object *sphere = create_object(10, "assets/models/sphere.obj");
struct object *kub = create_object(10, "assets/models/kub.obj");
/*for (int i = 0; i < 100; i++) {
struct object *planet = create_object(rand()%100, "assets/models/sphere.obj");
vec4 sphere_translate = {-8.0f, 2.0f, -10.0f};
glm_translate(sphere->translation_matrix, sphere_translate);
int x_limit = 50;
int y_limit = 50;
float random_x = (float) -x_limit+(rand() % (x_limit*2));
float random_y = (float) -y_limit+(rand() % (y_limit*2));
float force[] = {0.05f, -0.02f, 0.0f};
glm_vec3_make(force, sphere->translation_force);
// give random force as well
vec3 initial_boost;
glm_vec3_zero(initial_boost);
vec4 kub_translate = {10.0f, -2.0f, -15.0f};
glm_translate(kub->translation_matrix, kub_translate);
for (int j = 0; j < 3; j++) {
initial_boost[j] = 1/(rand() % 2);
}
vec3 kub_rotation_axis = {1.0f, 0.5f, 0.0f};
glm_rotate(kub->rotation_matrix, glm_rad(45.0f), kub_rotation_axis);
vec4 planet_position = {random_x, random_y, (float) -1000.0f, 0.0f};
glm_vec4_add(planet->position, planet_position, planet->position);
glm_vec3_add(planet->translation_force, initial_boost, planet->translation_force);
}*/
float distance = -1000.0f;
struct object *a = create_object(1000000000.0f, "assets/models/sphere.obj");
struct object *b = create_object(10000000.0f, "assets/models/sphere.obj");
// struct object *c = create_object(1000000000.0f, "assets/models/sphere.obj");
//struct object *d = create_object(10.0f, "assets/models/sphere.obj");
vec4 a_pos = {0.0f, 0.0f, distance, 0.0f};
glm_vec4_add(a->position, a_pos, a->position);
vec4 b_pos = {50.0f, -50.0f, distance, 0.0f};
glm_vec4_add(b->position, b_pos, b->position);
// vec4 c_pos = {0.0f, -20.0f, distance, 0.0f};
// glm_vec4_add(c->position, c_pos, c->position);
//vec4 d_pos = {0.0f, 20.0f, distance, 0.0f};
//glm_vec4_add(d->position, d_pos, d->position);
//struct object *cube = create_object(1000.0f, "assets/models/kub.obj");
//vec4 cube_location = {-2.0f, 0.0f, -10.0f, 0.0f};
//glm_vec4_add(cube->position, cube_location, cube->position);
float n = 0.1f;
//vec3 a_boost = {10*n, 0.0f, 0.0f};
//glm_vec3_add(a->translation_force, a_boost, a->translation_force);
vec3 b_boost = {-100*n, 0.0f, 0.0f};
glm_vec3_add(b->translation_force, b_boost, b->translation_force);
setup();