#include #include #include #include #include #include #include #include #include unsigned int vao; unsigned int vbo; unsigned int ebo; unsigned int nbo; unsigned int shader_program; unsigned int vertex_shader; unsigned int fragment_shader; // shaders const char *vertex_shader_location = "../assets/shaders/shader.vert"; const char *fragment_shader_location = "../assets/shaders/shader.frag"; // GPU data float *vertices = NULL; unsigned int *indices = NULL; float *normals = NULL; long vertices_num = 0; long indices_num = 0; long normals_num = 0; // Camera / LookAt vec3 camera_position; vec3 world_origin; vec3 up; vec3 right; vec3 forward; int load_shader(const char *path, unsigned int shader) { FILE *fp = fopen(path, "r"); int len = 0; char *ftext; if (fp == NULL) { fprintf(stderr, "Error: Cannot open file '%s'\n", path); return -1; } fseek(fp, 0L, SEEK_END); len = ftell(fp); if (len == -1) { fprintf(stderr, "Error: Cannot fetch length of file '%s'\n", path); return -1; } fseek(fp, 0L, SEEK_SET); ftext = (char *) malloc(len); if (ftext == NULL) { fprintf(stderr, "Error: Cannot allocate enough memory for file's contents '%s'\n", path); return -1; } fread(ftext, sizeof(char), len, fp); fclose(fp); glShaderSource(shader, 1, (const char **) &ftext, &len); glCompileShader(shader); int success; glGetShaderiv(shader, GL_COMPILE_STATUS, &success); if (success != GL_TRUE) { int log_length; glGetShaderiv(shader, GL_INFO_LOG_LENGTH, &log_length); char log[log_length]; glGetShaderInfoLog(shader, log_length, NULL, log); fprintf(stderr, "Shader Compilation Error: %s\n", log); return -1; } // RUD free(ftext); return 0; } int load_model(const char *path) { const struct aiScene *scene = aiImportFile(path, aiProcess_Triangulate); if (scene == NULL) { return -1; } // allocate enough memory vertices = (float *) malloc(1); for (int mesh_index = 0; mesh_index < scene->mNumMeshes; mesh_index++) { struct aiMesh *mesh = scene->mMeshes[mesh_index]; fprintf(stdout, "Number of vertices in mesh %d: %d\n", mesh_index, mesh->mNumVertices); // fetch vertices for (int vertex_index = 0; vertex_index < mesh->mNumVertices; vertex_index++) { struct aiVector3D *vertex = &(mesh->mVertices[vertex_index]); long start = vertices_num*3; vertices_num++; vertices = (float *) realloc(vertices, vertices_num*3*sizeof(float)); if (vertices == NULL) { return -1; } memcpy(&vertices[start], vertex, sizeof(float)*3); } // fetch indices for (int face_index = 0; face_index < mesh->mNumFaces; face_index++) { struct aiFace *face = &(mesh->mFaces[face_index]); long start = indices_num; indices_num += face->mNumIndices; indices = (unsigned int *) realloc(indices, sizeof(unsigned int)*indices_num); if (indices == NULL) { return -1; } memcpy(&indices[start], face->mIndices, sizeof(unsigned int)*face->mNumIndices); } // fetch normals for (int normal_index = 0; normal_index < mesh->mNumVertices; normal_index++) { struct aiVector3D *normal = &(mesh->mNormals[normal_index]); long start = normals_num*3; normals_num++; normals = (float *) realloc(normals, normals_num*3*sizeof(float)); if (normals == NULL) { return -1; } memcpy(&normals[start], normal, sizeof(float)*3); } } aiReleaseImport(scene); return 0; } int load_shaders() { glDeleteProgram(shader_program); shader_program = glCreateProgram(); // create and load new shaders vertex_shader = glCreateShader(GL_VERTEX_SHADER); fragment_shader = glCreateShader(GL_FRAGMENT_SHADER); if (load_shader(vertex_shader_location, vertex_shader) == -1) { return -1; } if (load_shader(fragment_shader_location, fragment_shader) == -1) { return -1; } glAttachShader(shader_program, vertex_shader); glAttachShader(shader_program, fragment_shader); glLinkProgram(shader_program); int success; glGetProgramiv(shader_program, GL_LINK_STATUS, &success); if (success != GL_TRUE) { int log_length; glGetProgramiv(shader_program, GL_INFO_LOG_LENGTH, &log_length); char log[log_length]; glGetProgramInfoLog(shader_program, log_length, NULL, log); fprintf(stderr, "Shader Compilation Error: %s\n", log); return -1; } glDeleteShader(vertex_shader); glDeleteShader(fragment_shader); return 0; } float deg = 0; void display() { mat4 model; vec3 model_axis = {1.0f, 1.0f, 0.0f}; mat4 view; vec3 view_translate = {0.0f, 0.0f, -10.0f}; mat4 projection; GLint viewport[4]; // viewport: x, y, width, height GLint model_uniform; GLint view_uniform; GLint projection_uniform; glClearColor(0.13f, 0.13f, 0.13f, 0.0f); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glGetIntegerv(GL_VIEWPORT, viewport); glm_mat4_identity(model); glm_rotate(model, glm_rad((float)deg), model_axis); deg += 1; model_uniform = glGetUniformLocation(shader_program, "model"); glUniformMatrix4fv(model_uniform, 1, GL_FALSE, (float *) model); glm_mat4_identity(view); glm_translate(view, view_translate); view_uniform = glGetUniformLocation(shader_program, "view"); glUniformMatrix4fv(view_uniform, 1, GL_FALSE, (float *) view); glm_mat4_identity(projection); glm_perspective(glm_rad(45.0f), (float)viewport[2]/(float)viewport[3], 0.01f, 100.0f, projection); projection_uniform = glGetUniformLocation(shader_program, "projection"); glUniformMatrix4fv(projection_uniform, 1, GL_FALSE, (float *) projection); glUseProgram(shader_program); glBindVertexArray(vao); glDrawElements(GL_TRIANGLES, indices_num, GL_UNSIGNED_INT, (void *) 0); glutSwapBuffers(); glutPostRedisplay(); } void keyboard(unsigned char key, int x, int y) { switch (key) { case '\x1B': { exit(EXIT_SUCCESS); break; } case 'r': case 'R': if (load_shaders() != 0) { fprintf(stderr, "Error: reloading shaders\n"); exit(EXIT_FAILURE); } fprintf(stdout, "Status: successfully reloaded shaders\n"); break; default: break; } } int setup() { if (load_shaders() != 0) { fprintf(stderr, "Error: loading shaders\n"); return -1; } if (load_model("assets/models/sphere.obj") == -1) { fprintf(stderr, "Error: loading model\n"); return -1; } glGenVertexArrays(1, &vao); glGenBuffers(1, &vbo); glGenBuffers(1, &ebo); glGenBuffers(1, &nbo); return 0; } void post_setup() { glBindVertexArray(vao); glBindBuffer(GL_ARRAY_BUFFER, vbo); glBufferData(GL_ARRAY_BUFFER, 3*vertices_num*sizeof(float), vertices, GL_STATIC_DRAW); glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 3 * sizeof(float), (void*) 0); glEnableVertexAttribArray(0); glBindBuffer(GL_ARRAY_BUFFER, nbo); glBufferData(GL_ARRAY_BUFFER, 3*normals_num*sizeof(float), normals, GL_STATIC_DRAW); glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 3 * sizeof(float), (void*) 0); glEnableVertexAttribArray(1); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, ebo); glBufferData(GL_ELEMENT_ARRAY_BUFFER, indices_num*sizeof(unsigned int), indices, GL_STATIC_DRAW); glBindVertexArray(0); glBindBuffer(GL_ARRAY_BUFFER, 0); glEnable(GL_DEPTH_TEST); } int main(int argc, char **argv) { glutInit(&argc, argv); glutInitDisplayMode(GLUT_RGB | GLUT_DOUBLE); glutCreateWindow("Simple Space Time Simulator"); GLenum err = glewInit(); if (err != GLEW_OK) { fprintf(stderr, "Error: %s\n", glewGetErrorString(err)); return EXIT_FAILURE; } fprintf(stdout, "Status: using with GLEW %s\n", glewGetString(GLEW_VERSION)); glutKeyboardFunc(&keyboard); glutDisplayFunc(&display); if (setup() == -1) { fprintf(stderr, "Error: Failed to setup\n"); return -1; } post_setup(); glutMainLoop(); return EXIT_SUCCESS; }