#include #include #include #include #include #include #include #include #include unsigned int vao; unsigned int vbo; unsigned int ebo; unsigned int nbo; unsigned int shader_program; unsigned int vertex_shader; unsigned int fragment_shader; // shaders const char *vertex_shader_location = "assets/shaders/shader.vert"; const char *fragment_shader_location = "assets/shaders/shader.frag"; // GPU data float *vertices = NULL; unsigned int *indices = NULL; float *normals = NULL; long vertices_num = 0; long indices_num = 0; long normals_num = 0; // Camera / LookAt vec3 camera_position; vec3 world_origin; vec3 up; vec3 right; vec3 forward; // structs struct object { mat4 rotation_matrix; mat4 translation_matrix; vec3 translation_force; vec3 rotation_force; float mass; void *next; float *vertices; unsigned int *indices; float *normals; long vertices_num; long indices_num; long normals_num; unsigned int vao; unsigned int vbo; // buffer for vertices unsigned int ebo; // buffer for indices unsigned int nbo; // buffer for normals }; // global objects information struct object* objects = NULL; int load_shader(const char *path, unsigned int shader) { FILE *fp = fopen(path, "r"); int len = 0; char *ftext; if (fp == NULL) { fprintf(stderr, "Error: Cannot open file '%s'\n", path); return -1; } fseek(fp, 0L, SEEK_END); len = ftell(fp); if (len == -1) { fprintf(stderr, "Error: Cannot fetch length of file '%s'\n", path); return -1; } fseek(fp, 0L, SEEK_SET); ftext = (char *) malloc(len); if (ftext == NULL) { fprintf(stderr, "Error: Cannot allocate enough memory for file's contents '%s'\n", path); return -1; } fread(ftext, sizeof(char), len, fp); fclose(fp); glShaderSource(shader, 1, (const char **) &ftext, &len); glCompileShader(shader); int success; glGetShaderiv(shader, GL_COMPILE_STATUS, &success); if (success != GL_TRUE) { int log_length; glGetShaderiv(shader, GL_INFO_LOG_LENGTH, &log_length); char log[log_length]; glGetShaderInfoLog(shader, log_length, NULL, log); fprintf(stderr, "Shader Compilation Error: %s\n", log); return -1; } // RUD free(ftext); return 0; } int load_model_to_object(const char *path, struct object *obj) { const struct aiScene *scene = aiImportFile(path, aiProcess_Triangulate); if (scene == NULL) { return -1; } for (int mesh_index = 0; mesh_index < scene->mNumMeshes; mesh_index++) { struct aiMesh *mesh = scene->mMeshes[mesh_index]; fprintf(stdout, "Number of vertices in mesh %d: %d\n", mesh_index, mesh->mNumVertices); // fetch vertices for (int vertex_index = 0; vertex_index < mesh->mNumVertices; vertex_index++) { struct aiVector3D *vertex = &(mesh->mVertices[vertex_index]); long start = obj->vertices_num*3; obj->vertices_num++; obj->vertices = (float *) realloc(obj->vertices, obj->vertices_num*3*sizeof(float)); if (obj->vertices == NULL) { return -1; } memcpy(&obj->vertices[start], vertex, sizeof(float)*3); } // fetch indices for (int face_index = 0; face_index < mesh->mNumFaces; face_index++) { struct aiFace *face = &(mesh->mFaces[face_index]); long start = obj->indices_num; obj->indices_num += face->mNumIndices; obj->indices = (unsigned int *) realloc(obj->indices, sizeof(unsigned int)*obj->indices_num); if (obj->indices == NULL) { return -1; } memcpy(&obj->indices[start], face->mIndices, sizeof(unsigned int)*face->mNumIndices); } // fetch normals for (int normal_index = 0; normal_index < mesh->mNumVertices; normal_index++) { struct aiVector3D *normal = &(mesh->mNormals[normal_index]); long start = obj->normals_num*3; obj->normals_num++; obj->normals = (float *) realloc(obj->normals,obj->normals_num*3*sizeof(float)); if (obj->normals == NULL) { return -1; } memcpy(&obj->normals[start], normal, sizeof(float)*3); } } aiReleaseImport(scene); return 0; } int load_shaders() { glDeleteProgram(shader_program); shader_program = glCreateProgram(); // create and load new shaders vertex_shader = glCreateShader(GL_VERTEX_SHADER); fragment_shader = glCreateShader(GL_FRAGMENT_SHADER); if (load_shader(vertex_shader_location, vertex_shader) == -1) { return -1; } if (load_shader(fragment_shader_location, fragment_shader) == -1) { return -1; } glAttachShader(shader_program, vertex_shader); glAttachShader(shader_program, fragment_shader); glLinkProgram(shader_program); int success; glGetProgramiv(shader_program, GL_LINK_STATUS, &success); if (success != GL_TRUE) { int log_length; glGetProgramiv(shader_program, GL_INFO_LOG_LENGTH, &log_length); char log[log_length]; glGetProgramInfoLog(shader_program, log_length, NULL, log); fprintf(stderr, "Shader Compilation Error: %s\n", log); return -1; } glDeleteShader(vertex_shader); glDeleteShader(fragment_shader); return 0; } void display() { mat4 view; mat4 projection; vec3 view_translate = {0.0f, 0.0f, -3.0f}; GLint viewport[4]; // viewport: x,y,width,height GLint translation_uniform; GLint rotation_uniform; GLint view_uniform; GLint projection_uniform; glClearColor(0.13f, 0.13f, 0.13f, 0.0f); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glGetIntegerv(GL_VIEWPORT, viewport); glUseProgram(shader_program); glm_mat4_identity(view); glm_translate(view, view_translate); glm_mat4_identity(projection); glm_perspective(glm_rad(45.0f), (float) viewport[2]/(float) viewport[3], 0.01f, 100.0f, projection); view_uniform = glGetUniformLocation(shader_program, "view"); projection_uniform = glGetUniformLocation(shader_program, "projection"); translation_uniform = glGetUniformLocation(shader_program, "translation"); rotation_uniform = glGetUniformLocation(shader_program, "rotation"); glUniformMatrix4fv(view_uniform, 1, GL_FALSE, (float *) view); glUniformMatrix4fv(projection_uniform, 1, GL_FALSE, (float *) projection); for (struct object *obj = objects; obj != NULL; obj = obj->next) { glm_translate(obj->translation_matrix, obj->translation_force); glUniformMatrix4fv(translation_uniform, 1, GL_FALSE, (float *) obj->translation_matrix); glUniformMatrix4fv(rotation_uniform, 1, GL_FALSE, (float *) obj->rotation_matrix); glBindVertexArray(obj->vao); glDrawElements(GL_TRIANGLES, obj->indices_num, GL_UNSIGNED_INT, (void *) 0); } glutSwapBuffers(); glutPostRedisplay(); } void keyboard(unsigned char key, int x, int y) { switch (key) { case '\x1B': { exit(EXIT_SUCCESS); break; } case 'r': case 'R': if (load_shaders() != 0) { fprintf(stderr, "Error: reloading shaders\n"); exit(EXIT_FAILURE); } fprintf(stdout, "Status: successfully reloaded shaders\n"); break; default: break; } } void setup() { for (struct object *obj = objects; obj != NULL; obj = obj->next) { glGenVertexArrays(1, &obj->vao); glGenBuffers(1, &obj->vbo); glGenBuffers(1, &obj->ebo); glGenBuffers(1, &obj->nbo); glBindVertexArray(obj->vao); glBindBuffer(GL_ARRAY_BUFFER,obj->vbo); glBufferData(GL_ARRAY_BUFFER,obj->vertices_num*3*sizeof(float),obj->vertices, GL_STATIC_DRAW); glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 3*sizeof(float), (void *) 0); glEnableVertexAttribArray(0); glBindBuffer(GL_ARRAY_BUFFER, obj->nbo); glBufferData(GL_ARRAY_BUFFER, obj->normals_num*3*sizeof(float), obj->normals, GL_STATIC_DRAW); glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 3*sizeof(float), (void *) 0); glEnableVertexAttribArray(1); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER,obj->ebo); glBufferData(GL_ELEMENT_ARRAY_BUFFER,obj->indices_num*sizeof(unsigned int),obj->indices, GL_STATIC_DRAW); glBindVertexArray(0); glBindBuffer(GL_ARRAY_BUFFER, 0); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); } glEnable(GL_DEPTH_TEST); } struct object *create_object(float mass, const char *model) { struct object *new_object = (struct object *) malloc(sizeof(struct object)); if (new_object == NULL) { return NULL; } new_object->mass = mass; glm_mat4_identity(new_object->translation_matrix); glm_mat4_identity(new_object->rotation_matrix); new_object->vertices_num = 0; new_object->indices_num = 0; new_object->normals_num = 0; new_object->vertices = NULL; new_object->indices = NULL; new_object->normals = NULL; new_object->next = NULL; if (load_model_to_object(model, new_object) == -1) { return NULL; } if (objects == NULL) { objects = new_object; return new_object; } struct object *obj = objects; while (obj->next != NULL) { obj = obj->next; } obj->next = new_object; return new_object; } int main(int argc, char **argv) { glutInit(&argc, argv); glutInitDisplayMode(GLUT_RGB | GLUT_DOUBLE); glutCreateWindow("Simple Space Time Simulator"); GLenum err = glewInit(); if (err != GLEW_OK) { fprintf(stderr, "Error: %s\n", glewGetErrorString(err)); return EXIT_FAILURE; } fprintf(stdout, "Status: using with GLEW %s\n", glewGetString(GLEW_VERSION)); glutKeyboardFunc(&keyboard); glutDisplayFunc(&display); if (load_shaders() != 0) { fprintf(stderr, "Error: loading shaders\n"); return EXIT_FAILURE; } // objects struct object *sphere = create_object(10, "assets/models/sphere.obj"); struct object *kub = create_object(10, "assets/models/kub.obj"); vec4 sphere_translate = {-8.0f, 2.0f, -10.0f}; glm_translate(sphere->translation_matrix, sphere_translate); float force[] = {0.05f, -0.02f, 0.0f}; glm_vec3_make(force, sphere->translation_force); vec4 kub_translate = {10.0f, -2.0f, -15.0f}; glm_translate(kub->translation_matrix, kub_translate); vec3 kub_rotation_axis = {1.0f, 0.5f, 0.0f}; glm_rotate(kub->rotation_matrix, glm_rad(45.0f), kub_rotation_axis); setup(); glutMainLoop(); return EXIT_SUCCESS; }