639 lines
18 KiB
C
639 lines
18 KiB
C
#include <time.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <math.h>
|
|
#include <string.h>
|
|
#include <GL/glew.h>
|
|
#include <GL/freeglut.h>
|
|
#include <cglm/cglm.h>
|
|
#include <assimp/cimport.h>
|
|
#include <assimp/scene.h>
|
|
#include <assimp/postprocess.h>
|
|
|
|
#define MAX_PATHS 100
|
|
|
|
float frand48(void) {
|
|
float number = (float) rand() / (float) (RAND_MAX + 1.0);
|
|
float side = rand() % 2;
|
|
if (side == 0) {
|
|
number = -number;
|
|
}
|
|
|
|
return number;
|
|
}
|
|
|
|
float fov = 80.0f; // default fov
|
|
float fov_change = 1.0f;
|
|
vec3 camera_pos = { 0.0f, 0.0f, 100.0f, };
|
|
vec3 camera_front = { 0.0f, 0.0f, -1.0f };
|
|
vec3 camera_up = { 0.0f, 1.0f, 0.0f };
|
|
float camera_yaw; // x rotation
|
|
float camera_pitch; // y rotation
|
|
float camera_sensitivity = 0.01f;
|
|
float movement_speed = 2.0f;
|
|
GLint screen_viewport[4]; // viewport: x,y,width,height
|
|
|
|
int toggle_tracing = 0; // true or false
|
|
|
|
unsigned int shader_program;
|
|
unsigned int vertex_shader;
|
|
unsigned int fragment_shader;
|
|
|
|
// shaders
|
|
const char *object_vertex_shader_location = "assets/shaders/shader.vert";
|
|
const char *object_fragment_shader_location = "assets/shaders/shader.frag";
|
|
|
|
// structs
|
|
struct object {
|
|
vec4 translation_force;
|
|
vec4 rotation_force;
|
|
vec4 position;
|
|
vec4 rotation;
|
|
vec3 color;
|
|
float mass;
|
|
void *next;
|
|
|
|
float *paths;
|
|
int paths_num;
|
|
int paths_max;
|
|
|
|
float *vertices;
|
|
unsigned int *indices;
|
|
float *normals;
|
|
long vertices_num;
|
|
long indices_num;
|
|
long normals_num;
|
|
float scale;
|
|
|
|
unsigned int vao; // array object for the actual object
|
|
unsigned int vbo; // buffer for vertices
|
|
unsigned int ebo; // buffer for indices
|
|
unsigned int nbo; // buffer for normals
|
|
|
|
unsigned int pvao; // array object for paths
|
|
unsigned int pbo; // buffer for paths
|
|
};
|
|
|
|
// global objects information
|
|
struct object* objects = NULL;
|
|
|
|
int load_shader(const char *path, unsigned int shader) {
|
|
FILE *fp = fopen(path, "r");
|
|
int len = 0;
|
|
char *ftext;
|
|
|
|
if (fp == NULL) {
|
|
fprintf(stderr, "Error: Cannot open file '%s'\n", path);
|
|
return -1;
|
|
}
|
|
|
|
fseek(fp, 0L, SEEK_END);
|
|
len = ftell(fp);
|
|
|
|
if (len == -1) {
|
|
fprintf(stderr, "Error: Cannot fetch length of file '%s'\n", path);
|
|
return -1;
|
|
}
|
|
|
|
fseek(fp, 0L, SEEK_SET);
|
|
|
|
ftext = (char *) malloc(len);
|
|
if (ftext == NULL) {
|
|
fprintf(stderr, "Error: Cannot allocate enough memory for file's contents '%s'\n", path);
|
|
return -1;
|
|
}
|
|
|
|
fread(ftext, sizeof(char), len, fp);
|
|
fclose(fp);
|
|
|
|
glShaderSource(shader, 1, (const char **) &ftext, &len);
|
|
glCompileShader(shader);
|
|
|
|
int success;
|
|
glGetShaderiv(shader, GL_COMPILE_STATUS, &success);
|
|
|
|
if (success != GL_TRUE) {
|
|
int log_length;
|
|
glGetShaderiv(shader, GL_INFO_LOG_LENGTH, &log_length);
|
|
|
|
char log[log_length];
|
|
glGetShaderInfoLog(shader, log_length, NULL, log);
|
|
|
|
fprintf(stderr, "Shader Compilation Error: %s\n", log);
|
|
return -1;
|
|
}
|
|
|
|
free(ftext);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int load_model_to_object(const char *path, struct object *obj) {
|
|
const struct aiScene *scene = aiImportFile(path, aiProcess_Triangulate);
|
|
|
|
if (scene == NULL) {
|
|
return -1;
|
|
}
|
|
|
|
for (int mesh_index = 0; mesh_index < scene->mNumMeshes; mesh_index++) {
|
|
struct aiMesh *mesh = scene->mMeshes[mesh_index];
|
|
fprintf(stdout, "Number of vertices in mesh %d: %d\n", mesh_index, mesh->mNumVertices);
|
|
|
|
// fetch vertices
|
|
for (int vertex_index = 0; vertex_index < mesh->mNumVertices; vertex_index++) {
|
|
struct aiVector3D *vertex = &(mesh->mVertices[vertex_index]);
|
|
long start = obj->vertices_num*3;
|
|
|
|
obj->vertices_num++;
|
|
obj->vertices = (float *) realloc(obj->vertices, obj->vertices_num*3*sizeof(float));
|
|
if (obj->vertices == NULL) {
|
|
return -1;
|
|
}
|
|
|
|
memcpy(&obj->vertices[start], vertex, sizeof(float)*3);
|
|
}
|
|
|
|
// fetch indices
|
|
for (int face_index = 0; face_index < mesh->mNumFaces; face_index++) {
|
|
struct aiFace *face = &(mesh->mFaces[face_index]);
|
|
long start = obj->indices_num;
|
|
|
|
obj->indices_num += face->mNumIndices;
|
|
obj->indices = (unsigned int *) realloc(obj->indices, sizeof(unsigned int)*obj->indices_num);
|
|
if (obj->indices == NULL) {
|
|
return -1;
|
|
}
|
|
|
|
memcpy(&obj->indices[start], face->mIndices, sizeof(unsigned int)*face->mNumIndices);
|
|
}
|
|
|
|
// fetch normals
|
|
for (int normal_index = 0; normal_index < mesh->mNumVertices; normal_index++) {
|
|
struct aiVector3D *normal = &(mesh->mNormals[normal_index]);
|
|
long start = obj->normals_num*3;
|
|
|
|
obj->normals_num++;
|
|
obj->normals = (float *) realloc(obj->normals,obj->normals_num*3*sizeof(float));
|
|
if (obj->normals == NULL) {
|
|
return -1;
|
|
}
|
|
|
|
memcpy(&obj->normals[start], normal, sizeof(float)*3);
|
|
}
|
|
}
|
|
|
|
aiReleaseImport(scene);
|
|
return 0;
|
|
}
|
|
|
|
int load_shaders() {
|
|
glDeleteProgram(shader_program);
|
|
shader_program = glCreateProgram();
|
|
|
|
// create and load new shaders
|
|
vertex_shader = glCreateShader(GL_VERTEX_SHADER);
|
|
fragment_shader = glCreateShader(GL_FRAGMENT_SHADER);
|
|
|
|
if (load_shader(object_vertex_shader_location, vertex_shader) == -1) {
|
|
return -1;
|
|
}
|
|
|
|
if (load_shader(object_fragment_shader_location, fragment_shader) == -1) {
|
|
return -1;
|
|
}
|
|
|
|
// compile object shader program
|
|
glAttachShader(shader_program, vertex_shader);
|
|
glAttachShader(shader_program, fragment_shader);
|
|
glLinkProgram(shader_program);
|
|
|
|
int success;
|
|
glGetProgramiv(shader_program, GL_LINK_STATUS, &success);
|
|
|
|
if (success != GL_TRUE) {
|
|
int log_length;
|
|
glGetProgramiv(shader_program, GL_INFO_LOG_LENGTH, &log_length);
|
|
|
|
char log[log_length];
|
|
glGetProgramInfoLog(shader_program, log_length, NULL, log);
|
|
|
|
fprintf(stderr, "[object program] Shader Compilation Error: %s\n", log);
|
|
return -1;
|
|
}
|
|
|
|
glDeleteShader(vertex_shader);
|
|
glDeleteShader(fragment_shader);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void calculate_gravity(struct object *src, struct object *target, vec3 force) {
|
|
vec4 tmp;
|
|
glm_vec4_sub(target->position, src->position, tmp);
|
|
|
|
vec3 distance;
|
|
glm_vec3(tmp, distance);
|
|
|
|
float distance_xy = sqrt((distance[0] * distance[0]) + (distance[1] * distance[1]));
|
|
float distance_xyz = sqrt((distance_xy * distance_xy) + (distance[2] * distance[2]));
|
|
float force_scale = 4.0f;
|
|
|
|
float g = 6.67f * 1e-11f;
|
|
float top = g * src->mass * target->mass;
|
|
|
|
for (int i = 0; i < 3; i++) {
|
|
distance[i] = (distance[i] * distance[i] * distance[i]);
|
|
}
|
|
|
|
for (int i = 0; i < 3; i++) {
|
|
if (distance[i] == 0) {
|
|
force[i] = 0.0f;
|
|
continue;
|
|
}
|
|
|
|
force[i] = (top / (distance_xyz / (target->position[i] - src->position[i]))) * force_scale;
|
|
}
|
|
}
|
|
|
|
// records the latest obj position to the path ring
|
|
int record_path(struct object *obj) {
|
|
if (obj->paths_num <= obj->paths_max) {
|
|
obj->paths = (float *) reallocarray(obj->paths, (obj->paths_num+1)*3, sizeof(float));
|
|
}
|
|
|
|
if (obj->paths == NULL) {
|
|
fprintf(stderr, "Error: failed allocating memory for paths of object\n");
|
|
return -1;
|
|
}
|
|
|
|
memcpy(obj->paths+(obj->paths_num*3), obj->position, 3*sizeof(float));
|
|
|
|
if (obj->paths_num < obj->paths_max) {
|
|
obj->paths_num++;
|
|
return 0;
|
|
}
|
|
|
|
// pop first element
|
|
memmove(obj->paths, &obj->paths[3], (obj->paths_num)*3*sizeof(float));
|
|
|
|
return 0;
|
|
}
|
|
|
|
void display() {
|
|
mat4 view;
|
|
mat4 projection;
|
|
|
|
GLint translation_uniform;
|
|
GLint view_uniform;
|
|
GLint projection_uniform;
|
|
GLint color_uniform;
|
|
GLint scale_uniform;
|
|
|
|
glClearColor(0.13f, 0.13f, 0.13f, 0.0f);
|
|
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
|
|
glGetIntegerv(GL_VIEWPORT, screen_viewport);
|
|
glUseProgram(shader_program);
|
|
|
|
glm_mat4_identity(view);
|
|
vec3 camera_center;
|
|
glm_vec3_add(camera_pos, camera_front, camera_center);
|
|
glm_lookat(camera_pos, camera_center, camera_up, view);
|
|
|
|
glm_mat4_identity(projection);
|
|
glm_perspective(glm_rad(fov), (float) screen_viewport[2]/(float) screen_viewport[3], 0.01f, 10000.0f, projection);
|
|
|
|
view_uniform = glGetUniformLocation(shader_program, "view");
|
|
projection_uniform = glGetUniformLocation(shader_program, "projection");
|
|
translation_uniform = glGetUniformLocation(shader_program, "translation");
|
|
scale_uniform = glGetUniformLocation(shader_program, "scale");
|
|
|
|
glUniformMatrix4fv(view_uniform, 1, GL_FALSE, (float *) view);
|
|
glUniformMatrix4fv(projection_uniform, 1, GL_FALSE, (float *) projection);
|
|
|
|
for (struct object *obj = objects; obj != NULL; obj = obj->next) {
|
|
mat4 translation_matrix;
|
|
glm_mat4_identity(translation_matrix);
|
|
|
|
// calculate gravity
|
|
for (struct object *target = objects; target != NULL; target = target->next) {
|
|
if (target == obj) {
|
|
continue;
|
|
}
|
|
|
|
vec3 force;
|
|
glm_vec3_zero(force);
|
|
calculate_gravity(obj, target, force);
|
|
|
|
vec4 force_new;
|
|
for (int i = 0; i < 3; i++) {
|
|
force_new[i] = force[i];
|
|
}
|
|
force_new[3] = 0.0f;
|
|
|
|
float n = obj->mass;
|
|
vec4 scaler = {n,n,n,1.0f};
|
|
glm_vec4_div(force_new, scaler, force_new);
|
|
|
|
glm_vec4_add(force_new, obj->translation_force, obj->translation_force);
|
|
}
|
|
|
|
glm_vec4_add(obj->position, obj->translation_force, obj->position);
|
|
|
|
// record path
|
|
if (toggle_tracing == 1) {
|
|
if (record_path(obj) == -1) {
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
}
|
|
|
|
glm_translate(translation_matrix, obj->position);
|
|
|
|
glUniformMatrix4fv(translation_uniform, 1, GL_FALSE, (float *) translation_matrix);
|
|
glUniform3fv(color_uniform, 1, (float *) obj->color);
|
|
glUniform1f(scale_uniform, obj->scale);
|
|
|
|
glBindVertexArray(obj->vao);
|
|
glDrawElements(GL_TRIANGLES, obj->indices_num, GL_UNSIGNED_INT, (void *) 0);
|
|
|
|
glBindVertexArray(obj->pvao);
|
|
|
|
glBindBuffer(GL_ARRAY_BUFFER, obj->pbo);
|
|
glBufferData(GL_ARRAY_BUFFER, obj->paths_num*3*sizeof(float),obj->paths, GL_STATIC_DRAW);
|
|
|
|
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 3*sizeof(float), (void *) 0);
|
|
glEnableVertexAttribArray(0);
|
|
|
|
glm_mat4_identity(translation_matrix);
|
|
glUniformMatrix4fv(translation_uniform, 1, GL_FALSE, (float *) translation_matrix);
|
|
|
|
glDrawArrays(GL_LINE_STRIP, 0, obj->paths_num);
|
|
}
|
|
|
|
glutSwapBuffers();
|
|
glutPostRedisplay();
|
|
}
|
|
|
|
void keyboard(unsigned char key, int x, int y) {
|
|
switch (key) {
|
|
case '\x1B':
|
|
{
|
|
exit(EXIT_SUCCESS);
|
|
break;
|
|
}
|
|
case 'r':
|
|
case 'R':
|
|
if (load_shaders() != 0) {
|
|
fprintf(stderr, "Error: reloading shaders\n");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
fprintf(stdout, "Status: successfully reloaded shaders\n");
|
|
|
|
break;
|
|
case 'a':
|
|
case 'A': {
|
|
vec3 side_scalar = { movement_speed, movement_speed, movement_speed };
|
|
vec3 camera_side;
|
|
glm_cross(camera_front, camera_up, camera_side);
|
|
glm_normalize(camera_side);
|
|
glm_vec3_mul(camera_side, side_scalar, camera_side);
|
|
glm_vec3_sub(camera_pos, camera_side, camera_pos);
|
|
break;
|
|
}
|
|
case 'd':
|
|
case 'D': {
|
|
vec3 side_scalar = {movement_speed, movement_speed, movement_speed};
|
|
vec3 camera_side;
|
|
glm_cross(camera_front, camera_up, camera_side);
|
|
glm_normalize(camera_side);
|
|
glm_vec3_mul(camera_side, side_scalar, camera_side);
|
|
glm_vec3_add(camera_pos, camera_side, camera_pos);
|
|
break;
|
|
}
|
|
case 's':
|
|
case 'S': {
|
|
vec3 front_scalar = {movement_speed, movement_speed, movement_speed};
|
|
glm_vec3_mul(front_scalar, camera_front, front_scalar);
|
|
glm_vec3_sub(camera_pos, front_scalar, camera_pos);
|
|
break;
|
|
}
|
|
case 'w':
|
|
case 'W': {
|
|
vec3 front_scalar = {movement_speed, movement_speed, movement_speed};
|
|
glm_vec3_mul(front_scalar, camera_front, front_scalar);
|
|
glm_vec3_add(camera_pos, front_scalar, camera_pos);
|
|
break;
|
|
}
|
|
case 't':
|
|
case 'T':
|
|
toggle_tracing = !toggle_tracing;
|
|
if (toggle_tracing == 0) {
|
|
break;
|
|
}
|
|
|
|
// remove all the recorded paths of objects
|
|
for (struct object *obj = objects; obj != NULL; obj = obj->next) {
|
|
obj->paths_num=0;
|
|
free(obj->paths);
|
|
obj->paths = NULL;
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
void mouse(int button, int state, int x, int y) {
|
|
switch (button) {
|
|
case 3:
|
|
if (fov-fov_change < 0.0f) {
|
|
break;
|
|
}
|
|
|
|
fov -= fov_change;
|
|
break;
|
|
case 4:
|
|
if (fov+fov_change > 180.0f) {
|
|
break;
|
|
}
|
|
|
|
fov += fov_change;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
int warped_pointer = 0;
|
|
void mouse_motion(int x, int y) {
|
|
if (warped_pointer == 1) {
|
|
warped_pointer = 0;
|
|
return;
|
|
}
|
|
|
|
warped_pointer = 1;
|
|
glutWarpPointer((screen_viewport[2]/2), screen_viewport[3]/2);
|
|
float offset_x = (float) (x - (screen_viewport[2]/2)) * camera_sensitivity;
|
|
float offset_y = (float) (y - (screen_viewport[3]/2)) * camera_sensitivity;
|
|
|
|
camera_yaw += offset_x;
|
|
camera_pitch -= offset_y;
|
|
|
|
// limit view rotation
|
|
if (camera_pitch < -89.9f) {
|
|
camera_pitch = -89.9f;
|
|
}
|
|
if (camera_pitch > 89.9f) {
|
|
camera_pitch = 89.9f;
|
|
}
|
|
|
|
vec3 view_direction;
|
|
view_direction[0] = cos(glm_rad(camera_yaw)) * cos(glm_rad(camera_pitch));
|
|
view_direction[1] = sin(glm_rad(camera_pitch));
|
|
view_direction[2] = sin(glm_rad(camera_yaw)) * cos(glm_rad(camera_pitch));
|
|
glm_normalize_to(view_direction, camera_front);
|
|
}
|
|
|
|
void setup() {
|
|
// setup default mouse position
|
|
glGetIntegerv(GL_VIEWPORT, screen_viewport);
|
|
glutWarpPointer(screen_viewport[2]/2, screen_viewport[3]/2);
|
|
|
|
for (struct object *obj = objects; obj != NULL; obj = obj->next) {
|
|
glGenVertexArrays(1, &obj->vao);
|
|
glGenVertexArrays(1, &obj->pvao);
|
|
glGenBuffers(1, &obj->vbo);
|
|
glGenBuffers(1, &obj->ebo);
|
|
glGenBuffers(1, &obj->nbo);
|
|
glGenBuffers(1, &obj->pbo);
|
|
|
|
glBindVertexArray(obj->vao);
|
|
|
|
glBindBuffer(GL_ARRAY_BUFFER,obj->vbo);
|
|
glBufferData(GL_ARRAY_BUFFER,obj->vertices_num*3*sizeof(float),obj->vertices, GL_STATIC_DRAW);
|
|
|
|
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 3*sizeof(float), (void *) 0);
|
|
glEnableVertexAttribArray(0);
|
|
|
|
glBindBuffer(GL_ARRAY_BUFFER, obj->nbo);
|
|
glBufferData(GL_ARRAY_BUFFER, obj->normals_num*3*sizeof(float), obj->normals, GL_STATIC_DRAW);
|
|
|
|
glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 3*sizeof(float), (void *) 0);
|
|
glEnableVertexAttribArray(1);
|
|
|
|
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER,obj->ebo);
|
|
glBufferData(GL_ELEMENT_ARRAY_BUFFER,obj->indices_num*sizeof(unsigned int),obj->indices, GL_STATIC_DRAW);
|
|
|
|
glBindVertexArray(0);
|
|
glBindBuffer(GL_ARRAY_BUFFER, 0);
|
|
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
|
|
}
|
|
|
|
glEnable(GL_DEPTH_TEST);
|
|
}
|
|
|
|
|
|
struct object *create_object(float mass, const char *model) {
|
|
struct object *new_object = (struct object *) malloc(sizeof(struct object));
|
|
|
|
if (new_object == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
new_object->mass = mass;
|
|
glm_vec4_one(new_object->position);
|
|
glm_vec4_one(new_object->rotation);
|
|
glm_vec4_zero(new_object->translation_force);
|
|
glm_vec4_zero(new_object->rotation_force);
|
|
new_object->vertices_num = 0;
|
|
new_object->indices_num = 0;
|
|
new_object->normals_num = 0;
|
|
new_object->scale = 1.0f;
|
|
new_object->vertices = NULL;
|
|
new_object->indices = NULL;
|
|
new_object->normals = NULL;
|
|
new_object->next = NULL;
|
|
new_object->paths = NULL;
|
|
new_object->paths_num = 0;
|
|
new_object->paths_max = MAX_PATHS;
|
|
glm_vec3_one(new_object->color);
|
|
|
|
// choose random color
|
|
for (int i = 0; i < 3; i++) {
|
|
new_object->color[i] = 0.5f + (fabs(frand48()) / 2);
|
|
}
|
|
|
|
if (load_model_to_object(model, new_object) == -1) {
|
|
return NULL;
|
|
}
|
|
|
|
if (objects == NULL) {
|
|
objects = new_object;
|
|
return new_object;
|
|
}
|
|
|
|
struct object *obj = objects;
|
|
while (obj->next != NULL) {
|
|
obj = obj->next;
|
|
}
|
|
|
|
obj->next = new_object;
|
|
|
|
return new_object;
|
|
}
|
|
|
|
int main(int argc, char **argv) {
|
|
srandom(time(NULL));
|
|
|
|
glutInit(&argc, argv);
|
|
glutInitDisplayMode(GLUT_RGB | GLUT_DOUBLE);
|
|
glutCreateWindow("gravity");
|
|
|
|
GLenum err = glewInit();
|
|
if (err != GLEW_OK) {
|
|
fprintf(stderr, "Error: %s\n", glewGetErrorString(err));
|
|
return EXIT_FAILURE;
|
|
}
|
|
|
|
fprintf(stdout, "Status: using with GLEW %s\n", glewGetString(GLEW_VERSION));
|
|
|
|
glutKeyboardFunc(&keyboard);
|
|
glutMouseFunc(&mouse);
|
|
glutPassiveMotionFunc(&mouse_motion);
|
|
glutDisplayFunc(&display);
|
|
|
|
if (load_shaders() != 0) {
|
|
fprintf(stderr, "Error: loading shaders\n");
|
|
return EXIT_FAILURE;
|
|
}
|
|
|
|
// objects
|
|
struct object *a = create_object(1.0f, "assets/models/sphere.obj");
|
|
struct object *b = create_object(1.0f, "assets/models/sphere.obj");
|
|
//struct object *c = create_object(1.0f, "assets/models/sphere.obj");
|
|
float distance = -200.0f;
|
|
|
|
// vec4 a_pos = {0.0f, 50.0f, distance, 0.0f};
|
|
// glm_vec4_add(a->position, a_pos, a->position);
|
|
vec4 a_pos = {0.0f, -40.0f, -150.0f, 0.0f};
|
|
glm_vec4_add(a->position, a_pos, a->position);
|
|
|
|
vec4 b_pos = {0.0f, -50.0f, -150.0f, 0.0f};
|
|
glm_vec4_add(b->position, b_pos, b->position);
|
|
|
|
//vec4 c_pos = {0.0f, -20.0f, distance, 0.0f};
|
|
//glm_vec4_add(c->position, c_pos, c->position);
|
|
|
|
float n = 0.05f;
|
|
|
|
// vec3 a_boost = {-10*n, 0.0f, 0.0f};
|
|
// glm_vec3_add(a->translation_force, a_boost, a->translation_force);
|
|
|
|
b->scale = 2.0f;
|
|
|
|
setup();
|
|
|
|
glutMainLoop();
|
|
|
|
return EXIT_SUCCESS;
|
|
} |